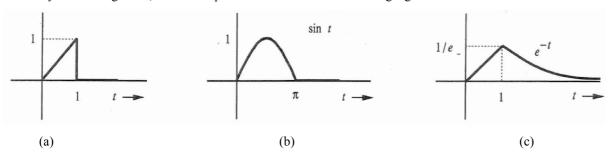
E2.5 Signals & Linear Systems

Tutorial Sheet 4 – Laplace Transform

(Support Lecture 6)

1.* By direct integration, find the one-sided Laplace transforms of the following functions:


a)
$$u(t) - u(t-1)$$

b)
$$te^{-t}u(t)$$

c)
$$t\cos\omega_0 t u(t)$$
.

d)
$$e^{-2t}\cos(5t+\theta)u(t)$$
.

2.* By direct integration, find the Laplace transforms of the following signals:

3.* Find the inverse (one-sided) Laplace transforms of the following functions:

a)
$$\frac{2s+5}{s^2+5s+6}$$

b)
$$\frac{3s+5}{s^2+4s+13}$$

c)
$$\frac{(s+1)^2}{s^2-s-6}$$

d)
$$\frac{2s+1}{(s+1)(s^2+2s+2)}$$

4.** Find the Laplace transforms of the following function using the Laplace Transform Table and the time-shifting property where appropriate.

a)
$$u(t) - u(t-1)$$

b)
$$e^{-(t-\tau)}u(t)$$

c)
$$e^{-t}u(t-\tau)$$

d)
$$\sin[\omega_0(t-\tau)]u(t-\tau)$$

e)
$$\sin[\omega_0(t-\tau)]u(t)$$

5.** Find the inverse Laplace transform of the function:

$$\frac{2s+5}{s^2+5s+6}e^{-2s}.$$

- 6.*** The Laplace transform of a causal periodic signal can be found from the knowledge of the Laplace transform of its first cycle alone.
 - a) If the Laplace transform of f(t) shown in Fig. 6 a) is F(s), shown that G(s), the Laplace transform of g(t) shown in Fig. 6 b) is given by:

$$G(s) = \frac{F(s)}{1 - e^{-sT_0}}$$
 Re $s > 0$

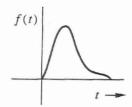


Fig 6 a)

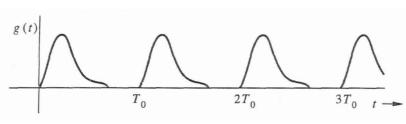
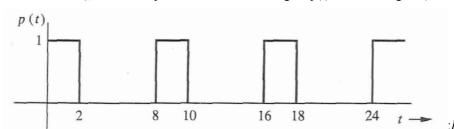



Fig 6 b)

b) Use the results in a), find the Laplace transform of the signal p(t) shown in Fig. 6 c).

(Hint: Remember that $1 + x + x^2 + x^3 + ... = \frac{1}{1 - x}$ for |x| < 1.)